Математична статистика - Руденко В. М. - Відмінності у значеннях дисперсій 3-х і більш сукупностей (критерій Кохрана q для вибірок однакових обсягів)
Для перевірки гіпотези щодо дисперсій двох сукупностей, які представлені залежними вибірками використовується критерій Стьюдента і, статистика якого має вигляд:
Де S1 і 82 - дисперсії вибірок; п - кількість пар спостережень; Г 12 - квадрат коефіцієнта парної кореляції.
Методика перевірки гіпотези аналогічна попередньому прикладу.
Приклад 5.15. Виконати перевірку статистичних гіпотез щодо дисперсій П пар спостережень (емпіричні дані у таблиці рис 5.37).
Послідовність рішення:
O Формулювання гіпотез. Умовам перевірки однаковості дисперсії П пар спостережень відповідає варіант неспрямованих гіпотез:
Н0: а21 = а22 (а21 не відрізняється від а22); Н1: а21 Ф а22 (а21 відрізняється від А22).
O Перевірка припущень: досліджуваний параметр має Нормальний розподіл; вибірки Зв'язані; виміри проведено за шкалою відношень.
O Вибір статистичного критерію. Згідно з припущеннями цій ситуації відповідає модель двобічного і-критерію Стьюдента:
O Розрахунки емпіричного критерію і відповідні формули показано на рис. 5.37 і 5.38. Дисперсії вибірок s12 ~ 1,60 і s22 ~ 0,78, а також значення квадрату коефіцієнта кореляції Пірсона r212 ~ 0,17 розраховано за допомогою функцій MS Excel =ДИСП() і =КВПИРСОН(). Емпіричний критерій приймає таке значення:
O Визначення критичного значення критерію. Для двобічної моделі встановлюються два критичні значення ГКр для точок (а/2) і (1-а/2) і-розподілу з числом ступенів вільності А/=п-2= 16-2=14, тобто: і А/2 і і 1-а/2. За допомогою функції =СТЬЮДРАСПОБР() для а = 0,05 отримаємо і 0025 ~ 2,49 і і ^975 ~ 0,03; для а = 0,01 і 0,005 ~ 3,29 і і 0,995 ~ 0,01 відповідно (рис. 5.37).
O Прийняття рішення. Оскільки значення і Емп~ 1,49 не знаходиться у жодній критичній зоні (0,03 < 1,49 < 2,49), приймається нульова гіпотеза Н0.
O Формулювання висновків. Навіть на рівні значущості 0,05 немає підстав стверджувати, що показники дисперсій відрізняються одне від одного.
Відмінності у значеннях дисперсій 3-х і більш сукупностей (критерій Кохрана q для вибірок однакових обсягів)
Для перевірки гіпотез про рівність дисперсій 3-х і більш сукупностей використовується критерій Кохрана q.
Приклад 5.16. Виконати перевірку статистичних гіпотез істотності різниць дисперсій трьох незв'язаних вибірок за емпіричними даними рис. 5.39.
Послідовність рішення:
O Формулювання гіпотез:
H0: а21 = а22 = а23 (дисперсії між собою не відрізняються); H1: а21 Ф а22 Ф а2} (дисперсії між собою відрізняються).
O Перевірка припущень: досліджуваний параметр має Нормальний розподіл; кількість вибірок більша двох; вибірки Незв'язані однакових обсягів; виміри проведено за шкалою Інтервалів.
O Вибір критерію. Ситуації відповідає статистика критерію Кохрана q:
S 2
Max __.
Q = 2 ? , (5.25)
Де S21, s22, s2M - дисперсії вибірок; s2Max - максимальна дисперсія; M - кількість вибірок.
O Результати оцінки емпіричного критерію qEMn і додаткових параметрів показано на рис. 5.39. Значення дисперсій вибірок s2 розраховано за допомогою функції =ДИСП(), для отримання емпіричного критерію qEM" у комірку В16 введено вираз =MAKC(B15:D15)/CyMM(B15:D15), що відповідає елементарним розрахункам цього критерію:
1,56
Q =---яв 0 44
1,09 +1,56 + 0,87 ' '
O Критичне значення q-критерію Кохрана можна отримати за допомогою табл. 5 Додатків. На рівні значущості а = 0,05 для кількості ступенів вільності у1 = п-1 = 11-1=10 і у2 = Т = 3 критичне значення д0 05 ~ 0,60.
O Прийняття рішення. Оскільки дЕм"< д0і05 (0,44 < 0,60) приймається нульова гіпотеза Н0.
O Формулювання висновків. На рівні значущості 0,05 немає підстав стверджувати про те, що показники дисперсій відрізняються одне від одного.
Одна з переваг методу перевірки статистичних гіпотез за критерієм Кох-рана Д є простота обчислень. Недоліком вважається те, що критерій виявляє ознаки відхилення тільки у бік зростання.
Схожі статті
-
Процедури перевірки гіпотез про рівність середніх для двох незалежних (незв'язаних) вибірок на основі критерію Стьюдента І продемонстровано у розділі...
-
Для перевірки гіпотези щодо дисперсій двох сукупностей, які представлені залежними вибірками використовується критерій Стьюдента і, статистика якого має...
-
Процедури перевірки гіпотез про рівність середніх для двох незалежних (незв'язаних) вибірок на основі критерію Стьюдента І продемонстровано у розділі...
-
Математична статистика - Руденко В. М. - Критерій Колмогорова-Смірнова λ
Критерій Крамера-Велча Т побудований на підході оцінювання рівності математичних очікувань генеральних сукупностей, звідки взято вибірки. Статистика...
-
Математична статистика - Руденко В. М. - Значущість дисперсії (критерій х2)
Критерій Стьюдента t використовується для перевірки гіпотез про чисельне значення середнього параметра з нормальним законом розподілу, коли дисперсія...
-
Математична статистика - Руденко В. М. - Значущість середнього (критерій t, дисперсія невідома)
Критерій Стьюдента t використовується для перевірки гіпотез про чисельне значення середнього параметра з нормальним законом розподілу, коли дисперсія...
-
Математична статистика - Руденко В. М. - Критерій Крамера-Велча T
Критерій Крамера-Велча Т побудований на підході оцінювання рівності математичних очікувань генеральних сукупностей, звідки взято вибірки. Статистика...
-
Математична статистика - Руденко В. М. - Значущість середнього (критерій Z, дисперсія відома)
Гіпотези про чисельні значення параметрів зустрічаються тоді, коли необхідно переконатися, що параметри центральних тенденції або мінливості відповідають...
-
Математична статистика - Руденко В. М. - Критерій Лемана-Розенблатта w2 n, m
Непараметричний критерій Лемана-Розенблатта типу омега-квадрат застосовується для перевірки однорідності двох незалежних вибірок. Як і за методом...
-
Математична статистика - Руденко В. М. - Критерій Стьюдента t
У дослідженнях з педагогіки чи психології часто виникає необхідність з'ясувати, чи розрізняються генеральні сукупності, з яких узято вибірки. Наприклад,...
-
Математична статистика - Руденко В. М. - 5.3. ПЕРЕВІРКА ОДНОРІДНОСТІ ВИБІРОК
У дослідженнях з педагогіки чи психології часто виникає необхідність з'ясувати, чи розрізняються генеральні сукупності, з яких узято вибірки. Наприклад,...
-
Математична статистика - Руденко В. М. - Критерій Шапіро-Вілка W
Критерій х засновано на порівнянні емпіричної гістограми розподілу випадкової величини з її теоретичною щільністю. Діапазон виміряних емпіричних даних...
-
Математична статистика - Руденко В. М. - Критерій згоди х2
Критерій х засновано на порівнянні емпіричної гістограми розподілу випадкової величини з її теоретичною щільністю. Діапазон виміряних емпіричних даних...
-
Математична статистика - Руденко В. М. - Помилки прийняття статистичних рішень
Прийняття статистичних рішень виконується на основі емпіричного критерію: якщо значення ¥Емп знаходяться в критичній області | ¥Емп | > | ¥Кр |, нульова...
-
Математична статистика - Руденко В. М. - 5.4. ПЕРЕВІРКА ГІПОТЕЗ ПРО ЧИСЕЛЬНІ ЗНАЧЕННЯ ПАРАМЕТРІВ
Гіпотези про чисельні значення параметрів зустрічаються тоді, коли необхідно переконатися, що параметри центральних тенденції або мінливості відповідають...
-
Математична статистика - Руденко В. М. - Правила прийняття статистичних рішень
Прийняття статистичних рішень виконується на основі емпіричного критерію: якщо значення ¥Емп знаходяться в критичній області | ¥Емп | > | ¥Кр |, нульова...
-
Математична статистика - Руденко В. М. - Критерій Вілкоксона-Манна-Вітні U
Статистика критерію Вілкоксона-Манна-Вітні25 И визначається у такий спосіб. Всі Х-елементи першої і 7-елементи другої вибірки об'єднуються. Об'єднана...
-
Математична статистика - Руденко В. М. - Типи і загальна схема перевірки статистичних гіпотез
Стандартні процедури прийняття (відхилення) нульової гіпотези Н0 основані на фіксації факту попадання значень емпіричного критерію ¥Ем" у критичну...
-
Математична статистика - Руденко В. М. - Статистичні рішення на основі р-значень
Стандартні процедури прийняття (відхилення) нульової гіпотези Н0 основані на фіксації факту попадання значень емпіричного критерію ¥Ем" у критичну...
-
Математична статистика - Руденко В. М. - Рівень статистичної значущості
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - Параметричні і непараметричні критерії
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - Статистичні критерії
Статистичний критерій - це вирішальне правило, що забезпечує математично обгрунтоване прийняття істинної і відхилення помилкової гіпотези. Статистичні...
-
Математична статистика - Руденко В. М. - Множинна регресія
Статистичні зв'язки між змінними досліджуються не лише методами кореляційного, а й регресійного аналізу, які доповнюють один одного. Основне завдання...
-
Математична статистика - Руденко В. М. - Одномірна лінійна регресія
Статистичні зв'язки між змінними досліджуються не лише методами кореляційного, а й регресійного аналізу, які доповнюють один одного. Основне завдання...
-
Математична статистика - Руденко В. М. - Методи статистичного оцінювання параметрів
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є...
-
Математична статистика - Руденко В. М. - Точкове оцінювання. Властивості статистичних оцінок
Точкове оцінювання Застосовують для приблизної оцінки Параметрів генеральної сукупності за статистиками вибірки. Спостережені вибіркові показники є...
-
Математична статистика - Руденко В. М. - Нормальний розподіл
Роботи Я. Бернуллі, а також приватні дослідження інших математиків XVII-XVIII ст. з Європи згодом оформилися в теорію ймовірності. У початковий період...
-
Математична статистика - Руденко В. М. - Інтервальне оцінювання
В основі застосування методу найменших квадратів покладено умову Мінімізації суми квадратів відхилень вибіркових даних від тих, що визначаються оцінкою....
-
Математична статистика - Руденко В. М. - Критерії асиметрії та ексцесу
При використанні методів математичної статистики надзвичайно важливо знати закон розподілу властивості, що вивчається. По суті, вже сама досліджувана...
-
Математична статистика - Руденко В. М. - 5.2. ГІПОТЕЗИ ЩОДО НОРМАЛЬНОГО РОЗПОДІЛУ ОЗНАК
При використанні методів математичної статистики надзвичайно важливо знати закон розподілу властивості, що вивчається. По суті, вже сама досліджувана...
Математична статистика - Руденко В. М. - Відмінності у значеннях дисперсій 3-х і більш сукупностей (критерій Кохрана q для вибірок однакових обсягів)